Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 444: 138622, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38310779

RESUMO

Three cultivars of waxy rice starch with different multi-scale structures were subjected to α-amylase hydrolysis to determine amylopectin fine structure, production of oligosaccharides, morphology, and crystallinity of the partially hydrolyzed starch granules. α-amylases hydrolyzed the amylopectin B2 chain during the initial stage of hydrolysis, suggesting that it is primarily located in the outer shell of the granules. For waxy rice starch with loose structure, α-amylases attacked the crystalline and amorphous regions simultaneously in the initial stage, while for starch granules with compact structure, the outer shell blocklet (crystalline structure) can be a hurdle for α-amylases to proceed to hydrolysis of the internal granule structure. The ability of α-amylases from porcine pancreatic α-amylases to attack the outer shell crystalline structure was lower than that of α-amylases from Bacillus amyloliquefaciens and Aspergillus oryzae. These results show that α-amylase source and rice cultivar combinations can be used to generate diverse structures in degraded waxy rice starch.


Assuntos
Oryza , Amido , Amido/química , Amilopectina/química , alfa-Amilases/metabolismo , Hidrólise , Oryza/química
2.
Int J Biol Macromol ; 259(Pt 1): 129139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176497

RESUMO

Normal and waxy maize starches with and without removal of starch granule surface lipids (SGSLs) were crosslinked by POCl3 (0.01 %, 0.1 % and 1 %). Crosslinked starches showed lower swelling power and solubility, but higher pasting viscosity, pseudoplasticity, thixotropy, storage modulus and loss modulus. Crosslinking increased the double helical structure but decreased the crystallinity for waxy maize starch. The phosphorus content of crosslinked waxy maize starches after SGSLs removal increased, indicating SGSLs removal promoted crosslinking. SGSLs removal increased G' and G" for crosslinked waxy maize starches. SGSLs removal increased SP and solubility and decreased pasting and rheological parameters of starches. With increased POCl3 dosage, the effect of SGSLs removal on starch properties was gradually suppressed by crosslinking. Waxy and normal maize starches showed significantly different changes with crosslinking and SGSLs removal, and the presence of amylose seemed to impede the effect of crosslinking and SGSLs removal. The removal of SGSLs could extend the application of crosslinked starch in frozen foods, drinks, and canned foods as thickener and stabilizer, due to its better hydrophilicity and viscous liquid-like rheological properties. The study will assist carbohydrate chemists and food processors in developing new food products.


Assuntos
Amido , Zea mays , Zea mays/química , Amido/química , Amilose/química , Amilopectina/química , Viscosidade , Ceras/química
3.
Int J Biol Macromol ; 257(Pt 2): 128535, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048925

RESUMO

Potato noodles are a popular food due to their unique texture and taste, but native potato starch often fails to meet consumer demands for precise textural outcomes. The effect of blending small granule (waxy amaranth, non-waxy oat and quinoa) starch with potato starch on the properties of noodles was investigated to enhance quality of noodles. Morphological results demonstrated that small granule starch filled gaps between potato starch granules, some of which gelatinized incompletely. Meanwhile, XRD and FTIR analysis indicated that more ordered structures and hydrogen bonding among starch granules increased with addition of small granule starch. The addition of oat or quinoa starch increased gel elasticity, decreased viscosity of the pastes, and increased the tensile strength of noodles, while addition of 30 % and 45 % waxy amaranth starch did not increase G' value of gel or tensile strength of noodles. These results indicated that amylose molecules played an important role during retrogradation, and may intertwine and interact with each other to enhance the network structure of starch gel in potato starch blended with oat or quinoa starch. This study provides a natural way to modify potato starch for desirable textural properties of noodle product.


Assuntos
Solanum tuberosum , Solanum tuberosum/química , Amido/química , Amilose/química , Amilopectina/química , Farinha/análise
4.
Int J Biol Macromol ; 254(Pt 3): 127991, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949270

RESUMO

Roles of temperature, moisture and starch granule-associated surface lipids (SGASL) during heat-moisture treatment (HMT) of waxy highland barley starch were elucidated. Starch without SGASL showed a higher increase in ratio (1016/993 cm-1) (0.095-0.121), lamellar peak area (88), radius of gyration (Rg1, 0.9-1.8 nm) and power-law exponents (0.19-0.42) than native starch (0.038-0.047, 46, 0.1-0.6 nm, 0.04-0.14), upon the same increase in moisture or temperature. Thus, removing SGASL promoted HMT. However, after HMT (30 % moisture, 120 °C), native starch showed lower relative crystallinity (RC, 11.67 %) and lamellar peak area (165.0), longer lamellar long period (L, 14.99 nm), and higher increase in peak gelatinization temperature (9.2-13.3 °C) than starch without SGASL (12.04 %, 399.2, 14.52 nm, 4.7-6.1 °C). This suggested that the resulting SGASL-amylopectin interaction further destroyed starch structure. Starch with and without SGASL showed similar trends in RC, lamellar peak area, L and Rg1 with increasing temperature, but different trends with increasing moisture, suggesting that removing SGASL led to more responsiveness to the effects of increasing moisture. Removing SGASL resulted in similar trends (RC and lamellar peak area) with increasing moisture and temperature, suggesting that the presence of SGASL induced different effects on moisture and temperature.


Assuntos
Amilopectina , Hordeum , Temperatura , Temperatura Alta , Amido/química , Lipídeos
5.
Int J Biol Macromol ; 256(Pt 1): 128407, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007010

RESUMO

Characterization of local varietal barley quality diversity can help boost further development of novel value-added utilization of the grain. Therefore, in this study starch was isolated from 11 Ethiopian malting barley varieties to determine starch structural, pasting, thermal and digestibility characteristics, and their inter-relationships. The varieties showed significant differences in all amylopectin chain length fractions, and the A, B1, B2 and B3 chains ranged from 25.4 to 30.1, 47.4-50.1, 14.3-16.0 and 7.8-9.0 %, respectively. The varieties also exhibited significant variation in amylose content, relative crystallinity, absorbance peak ratios, pasting and thermal properties. Moreover, on average about 83 % raw starch of the varieties was classified as slowly digestible and resistant, whereas after gelatinization this was reduced to 9 %. Molecular and crystalline structures were strongly related to pasting properties, thermal characteristics and in vitro digestibility of the starches. The study provides information on some starch quality characteristics and the inter-relationships among the parameters, and might inspire further studies to suggest possible target-based starch modifications, and future novel utilization of barley. More studies are required to investigate the association of starch quality parameters with malting quality attributes.


Assuntos
Hordeum , Amido , Amido/química , Estrutura Molecular , Amilopectina/química , Amilose/química , Viscosidade
6.
Food Res Int ; 174(Pt 1): 113564, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986517

RESUMO

Lotus seed starch has high apparent amylose content (AAM). A representative definition of its granular architecture (e.g., lamellar structure) remained absent. This study defined the granular shape, crystalline and lamellar structures, and digestibility of twenty-two samples of lotus seed starch (LS) by comparing with those of potato and maize starches. LS granules had more elongated shape and longer repeat distance of lamellae than potato and maize starch granules. The enzymatic susceptibility of LS granules was more affected by AAM than granular architecture. Using these LSs as a model system, the relationships between lamellar structure of starch granules and properties of their gelatinized counterparts were investigated. In LSs, thinner amorphous lamella and thicker crystalline lamella were associated with higher swelling power and yield stress. The relationships were found to be connected via certain structural characteristics of amylopectin.


Assuntos
Solanum tuberosum , Amido , Amido/química , Amilose/química , Amilopectina/química , Sementes , Zea mays/química
7.
Front Nutr ; 10: 1201357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408989

RESUMO

Introduction: Bracken fern (Pteridium aquilinum) starch is a non-mainstream, litter-researched starch, thus the starch characteristics remain largely unknown. Methods: The structural and physicochemical properties of two bracken starches were systematically investigated, by use of various techniques that routinely applied in starch analysis. Results and Discussion: The starches had amylose contents of 22.6 and 24.7%, respectively. The starch granules possessed C-type polymorph with D (4,3) ranging from 18.6 to 24.5 µm. During gelatinization event, the bracken starches showed lower viscosity than typical for rice starch, and lower gelatinization temperature than typical for cereal starches. After gelatinization event, bracken starches formed much softer and sticky gel than rice and potato starch. The molecular weight and branching degree (indexed by Mw, Mn and Rz values) of bracken starches were much higher than starches of many other sources. The branch chain length distributions showed that the bracken starches were structurally similar to some rice varieties (e. g. BP033, Beihan 1#), as reflected by proportions of A, B1, B2, and B3 chains. Notable differences in some starch traits between the two bracken starches were recorded, e. g. amylose content, gel hardness, gelatinization temperature and traits of structural properties. This study provides useful information on the utilization of bracken starch in both food and non-food industries.

8.
Front Nutr ; 10: 1159554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305079

RESUMO

Introduction: Starch is major component in the big seeds of Cycas revoluta, however the characteristics of Cycas revoluta remain unknown. Methods: In this study, the physicochemical and structural properties of two starch samples extracted from Cycad revoluta seeds were systematically investigated, using various techniques. Results: The amylose contents of the two samples were 34.3 % and 35.5%, respectively. The spherical-truncated shaped starch granules possessed A-type crystallinity, and had an average diameter less than 15 µm. Compared to most commonly consumed cereal and potato starch, Cycad revoluta starch showed distinctive characteristics. For physicochemical properties, in the process of gelatinization, the Cycad revoluta starch showed similar viscosity profile to starches of some potato varieties, but Cycad revoluta starch had higher gelatinization temperature. Upon cooling, Cycad revoluta starch formed harder gels than rice starch. For structure, the molecular weight (indexed by Mw, Mn and Rz values), branching degree and the branch chain length distribution were determined. Discussion: The results suggested that Cycad revoluta starch were different in structure from the main-stream starches. Notable differences in some starch traits between the two samples were recorded, which could be attributed to environmental factors. In general, this study provides useful information on the utilization of Cycad revoluta starch in both food and non-food industries.

9.
Int J Biol Macromol ; 242(Pt 4): 125105, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257534

RESUMO

Investigation on amylopectin molecular structure is gaining importance for understanding starch property. Lotus seeds are a novel starch source with high apparent amylose content. Current understanding on the molecular structure of amylopectin in lotus seed starch is scarce. This study compared the molecular structure of a range of lotus seed amylopectins with those of maize and potato amylopectins. Internal structures of these amylopectins were compared via investigating the chain length distribution of their ß-limit dextrins. The average lengths and molar compositions of unit chains in lotus seed amylopectins and their ß-limit dextrins fell generally between those of maize and potato. The average chain lengths of lotus seed, maize, and potato amylopectins were 19.95 (on average), 19.11, and 21.19 glucosyl residues, respectively. Lotus seed amylopectins had higher weight proportion of clustered unsubstituted chains (44.94 % on average) than those of potato (43.99 %) and maize amylopectins (42.95 %). Results of correlation analysis indicated that apparent amylose content of LS was related to structural characteristics of its amylopectin due to the presence of long external chains. The results of this study are of fundamental importance for the utilization of lotus seed starch as a novel starch source.


Assuntos
Amilopectina , Amilose , Amilopectina/química , Amilose/química , Dextrinas/química , Estrutura Molecular , Amido/química , Sementes , Zea mays/química
10.
Food Chem ; 421: 136141, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37084593

RESUMO

The influences of sodium chloride (NaCl)/sucrose on starch properties as affected by starch structural characteristics are little understood. In this study, the effects were observed in relation to the chain length distribution (from size exclusion chromatography) and granular packing (inferred through morphological observation and determination of swelling factor and paste transmittance) of starches. Adding NaCl/sucrose dramatically delayed the gelatinization of starch that had a high ratio of short-to-long amylopectin chains and had loose granular packing. The effects of NaCl on the viscoelasticity of gelatinizing starch were related to the flexibility of amylopectin internal structure. Effects of NaCl/sucrose on starch retrogradation varied with starch structure, co-solute concentration, and analytical method. The co-solute-induced changes in retrogradation were highly associated with amylose chain length distribution. Sucrose strengthened the weak network formed by short amylose chains, while the effect was not significant on amylose chains that were capable of forming strong networks.


Assuntos
Amilopectina , Amido , Amido/química , Amilopectina/química , Cloreto de Sódio , Amilose/química , Sacarose
11.
Int J Biol Macromol ; 240: 124430, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062381

RESUMO

The distribution of surface proteins/lipids and their effect on physicochemical properties of wheat A- and B-starch were investigated. Small B-starch with higher surface protein (~1.8 %) and lipid (~0.4 %) contents did not differ significantly from specific surface area of large A-starch (~0.2 % protein and ~0.1 % lipid), indicating surface lipids/proteins for starch are characteristic of their biological origin, not directly related to granule size. The surface of A-starch granule was an integrated membrane structure (lipids covered by proteins). B-starch showed a greater decrease in peak and trough viscosity (130 and 82 cP) than A-starch (99 and 52 cP) after removing surface proteins, perhaps because the presence of residual surface lipid as a membrane protected the rigidity of A-starch granule. B-starch showed a greater increase in consistency coefficient (K) (47.01 Pa·sn) than A-starch (20.33 Pa·sn) after removing surface lipids, possibly because the greater loss of surface lipid as complex with amylose in B-starch retarded retrogradation and reduced K. These results show that different distributions and contents of surface proteins/lipids between wheat A- and B-starch granule contribute to the pasting and rheological properties.


Assuntos
Proteínas de Membrana , Triticum , Triticum/química , Amido/química , Amilose/química , Viscosidade , Lipídeos/química
12.
J Biomol Struct Dyn ; 41(20): 11341-11352, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36871957

RESUMO

The spread of multidrug resistant bacteria has fueled the development of new antibiotics to combat bacterial infections. Disrupting the quorum sensing (QS) mechanism with biomolecules is a promising approach against bacterial infections. Plants used in Traditional Chinese Medicine (TCM) represent a valuable resource for the identification of QS inhibitors. In this study, the in vitro anti-QS activity of 50 TCM-derived phytochemicals against the biosensor Chromobacterium violaceum CV026 was tested. Among the 50 phytochemicals, 7-methoxycoumarin, flavone, batatasin III, resveratrol, psoralen, isopsoralen, and rhein inhibited violacein production and showed good QS inhibitory effects. Batatasin III was selected as the best QS inhibitor based on drug-likeness, physicochemical properties, toxicity, and bioactivity score prediction analyses using SwissADME, PreADMET, ProtoxII, and Molinspiration. At 30 µg/ mL, Batatasin III inhibited violacein production and biofilm formation in C. violaceum CV026 by more than 69% and 54% respectively without affecting bacterial growth. The in vitro cytotoxicity evaluation by MTT assay demonstrated that batatasin III reduced the viability of 3T3 mouse fibroblast cells to 60% at 100 µg/mL. Furthermore, molecular docking studies showed that batatasin III has strong binding interactions with the QS-associated proteins CViR, LasR, RhlR, PqsE, and PqsR. Molecular dynamic simulation studies showed that batatasin III has strong binding interactions with 3QP1, a structural variant of CViR protein. The binding free energy value of batatasin III-3QP1 complex was -146.295 ± 10.800 KJ/mol. Overall results suggested that batatasin III could serve as a lead molecule that could be developed into a potent QS inhibitor.Communicated by Ramaswamy H. Sarma.


Assuntos
Infecções Bacterianas , Percepção de Quorum , Animais , Camundongos , Biofilmes , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Compostos Fitoquímicos/farmacologia
13.
Carbohydr Polym ; 305: 120515, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737183

RESUMO

Current understanding of physicochemical properties of lotus seed starch (LS) is scarce partly due to its largely unknown molecular structure. This study compared the physicochemical and molecular characteristics of LSs of a wide collection to those of conventional starches (potato (PS) and maize starches (MS)). Variations were found in the chemical composition, physicochemical properties, and molecular structure of LSs. Amylose content and weight-based ratio of short to long chains of amylopectin (APS:APL) were principal factors affecting the physicochemical properties of LSs from different origins. Compared with PS and MS, LSs had higher gelatinization temperatures, lower amylose leaching, and faster retrogradation. These unique properties of LSs were related to their molecular structure and chemical composition. LSs had higher amylose contents than PS and MS as evaluated by various methods. A majority of amylose chains in LS were longer than those in MS but were shorter than those in PS. The APS:APL of LSs were higher than that of MS but lower than that of PS. The results provided a structural basis for understanding the properties of LS and suggested that this unconventional starch may be complementary to conventional starches for industrial applications.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Estrutura Molecular , Amilopectina/química , Sementes
14.
Antibiotics (Basel) ; 12(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36830150

RESUMO

Salmonella enterica is an important foodborne pathogen that causes gastroenteritis and systemic infection in humans and livestock. Salmonella biofilms consist of two major components-amyloid curli and cellulose-which contribute to the prolonged persistence of Salmonella inside the host. Effective agents for inhibiting the formation of biofilms are urgently needed. We investigated the antibiofilm effect of Raspberry Ketone (RK) and its mechanism of action against Salmonella Typhimurium 14028 using the Congo red agar method, Calcofluor staining, crystal violet method, pellicle assay, and the TMT-labeled quantitative proteomic approach. RK suppressed the formation of different types of Salmonella biofilms, including pellicle formation, even at low concentrations (200 µg/mL). Furthermore, at higher concentrations (2 mg/mL), RK exhibited bacteriostatic effects. RK repressed cellulose deposition in Salmonella biofilm through an unknown mechanism. Swimming and swarming motility analyses demonstrated reduced motility in RK-treated S. typhimurium. Proteomics analysis revealed that pathways involved in amyloid curli production, bacterial invasion, flagellar motility, arginine biosynthesis, and carbohydrate metabolism, were targeted by RK to facilitate biofilm inhibition. Consistent with the proteomics data, the expressions of csgB and csgD genes were strongly down-regulated in RK-treated S. typhimurium. These findings clearly demonstrated the Salmonella biofilm inhibition capability of RK, justifying its further study for its efficacy assessment in clinical and industrial settings.

15.
Carbohydr Polym ; 303: 120477, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657850

RESUMO

The effects of starch granule-associated surface lipids removal on hull-less barley starch structure formed by heat-moisture treatment were investigated. Removing surface lipids made the peak at 2θ of 13° disappear and resulted in higher lamellar peak intensity after harsh treatment and a lower reduction in mass fractal dimension (from 2.49 to 2.43) and radius of gyration (from 24.3 to 24.0) when temperature increased from 100 to 120 °C at 20 % moisture. Treatment at 25 % moisture and 120 °C decreased relative crystallinity (from 15.73 % to 7.43 %) and Gaussian peak area (from 646.7 to 137.7) of native starch, and decreased relative crystallinity (from 14.24 % to 12.56 %) and Gaussian peak area (from 604.1 to 539.6) for starch without surface lipids. Different trends of change in lamellar thickness, linear crystallinity, peak temperatures, and enthalpy of gelatinization were observed among modified starches with increasing temperature and/or moisture content. These results demonstrate that removing surface lipids changes structure of heat-moisture treated starch.


Assuntos
Hordeum , Amido , Amido/química , Temperatura Alta , Temperatura , Lipídeos
17.
Int J Biol Macromol ; 219: 473-481, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35917853

RESUMO

Starch granule-associated surface and channel lipids (SGALs) were effectively removed from waxy maize starch (WMS) and normal maize starch (NMS), then the starches were crosslinked by different levels of sodium trimetaphosphate (STMP) (0.25 %, 0.5 %, 1 % and 2 %). The effective removal of SGALs and successful crosslinking, were evidenced by the disappearance of surface-fluorescence and channel-fluorescence of Pro-Q Diamond-stained granules, and the increased phosphorus content respectively. STMP crosslinking increased peak and final viscosity for WMS and NMS. Crosslinking at high STMP levels (0.5 %, 1 % and 2 %) transformed the starch pastes from thixotropic to anti-thixotropic. STMP crosslinking significantly decreased the tan δ values of maize starches, enhancing the elastic structure of the gel. Crosslinked maize starches without SGALs had lower breakdown than crosslinked starches at same STMP level, indicating higher tightened crosslinked starch granules after SGALs removal. Removal of SGALs increased the anti-thixotropy of crosslinked starches, facilitating the reorientation of crosslinked amylopectin/amylose molecules during shearing. Removal of SGALs increased the tan δ values from frequency sweep of WMS and NMS during STMP crosslinking, indicating the presence of surface-lipids and channel-lipids could enhance the elastic gel network structure of crosslinked maize starch.


Assuntos
Amilopectina , Amilose , Amilopectina/química , Amilose/química , Diamante , Lipídeos , Fósforo , Polifosfatos , Amido/química , Zea mays/química
18.
Foods ; 11(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741907

RESUMO

Coffee cascara is the first and most significant by-product of the coffee processing industry, whose valorization has become an urgent priority to reduce harmful environmental impacts. This work aimed to provide an improved understanding of phytochemicals and polysaccharides in coffee cascara in order to offer information for the better evaluation of potential applications. Phytochemicals in 20 different coffee cascara samples were ultrasonically extracted and analyzed by HPLC-UV and HPLC-MS/MS. Four novel compounds were isolated for the first time from coffee cascara, including two still unknown tautomers (337 Da), and two dihydroflavonol glycosides (dihydromyricetin glycoside and dihydromyricetin rhamnosylglycoside). Their presence can contribute to the design of new value-added applications of coffee cascara. Chemical characterization of two polysaccharides from two of the coffee cascara pulp samples showed that they were mainly composed of homogalacturonan, with rhamnose and arabinose as minor neutral sugars. In addition, principal component analysis results indicated that coffee cultivar and/or country significantly impacted the phytochemical composition of coffee cascara, although differences may be reduced by the external environment and processing method. It is suggested that processing method should be carefully designed when generating coffee cascara from the same cultivar and country/farm.

19.
Int J Biol Macromol ; 213: 456-464, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35661670

RESUMO

Large A-type and small B-type starch granules separated from waxy and normal hull-less barley starches were investigated for their physicochemical properties. Hull-less barley starch granules were covered by a membrane composed mainly of phospholipids. Channels of waxy A- and B-type granules were rich in proteins and phospholipids. Compared with A-type starch, B-type starch exhibited higher specific surface area, volume and average diameter of mesopores. Waxy A-type granules exhibited the higher peak, breakdown, final and setback viscosity than did B-type granules, while normal A-type granules showed the lower peak, breakdown, final viscosity and the higher setback viscosity than did B-type granules. B-type starch gels with lower storage modulus exhibited a less elastic gel network structure and retrograded more slowly. Moreover, in vitro hydrolysis of starch showed that the B-type granules exhibited a higher hydrolysis extent and rate than the A-type granules in the first stage, which was consistent with higher initial α-amylase binding ability of B-type granules. The study showed that the A-type and B-type starch separated from waxy and normal hull-less barley exhibited very different physicochemical properties.


Assuntos
Hordeum , Amido , Hordeum/química , Fosfolipídeos/metabolismo , Amido/química , Viscosidade , Ceras/química
20.
Foods ; 11(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267310

RESUMO

Hulless barley grass may confer many health benefits attributed to its bioactive functional components, such as polysaccharides. Here, a hot water soluble polysaccharide was extracted from hulless barley grass, and its chemical characterization and in vitro anti-cancer activities were investigated. The yield of hulless barley grass polysaccharide (HBGP) was 2.3%, and the purity reached 99.1% with a polydispersity index (PDI) of 1.11 after purification by a diethylaminoethyl cellulose (DE-32) column and an S-400 high resolution (HR) column. The molecular weight and number-average molecular weight of HBGP were 3.3 × 104 and 2.9 × 104 Da, respectively. The monosaccharide composition of HBGP included 35.1% galactose, 25.6% arabinose, 5.5% glucose, and 5.3% xylose. Based on infrared spectrum analysis, HBGP possessed pyranose and galactose residues. In addition, this water-soluble polysaccharide showed significant cell proliferation inhibitory effects against cancer cell lines HT29, Caco-2, 4T1, and CT26.WT in a dose-dependent manner, especially for HT29 (the half-inhibitory concentration IC50 value = 2.72 mg/mL). The results provide a basis for the development and utilization of hulless barley grass in functional foods to aid in preventing cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...